首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   17篇
电工技术   4篇
化学工业   88篇
金属工艺   6篇
机械仪表   10篇
建筑科学   7篇
能源动力   15篇
轻工业   29篇
石油天然气   3篇
无线电   42篇
一般工业技术   64篇
冶金工业   30篇
原子能技术   11篇
自动化技术   70篇
  2024年   2篇
  2023年   18篇
  2022年   24篇
  2021年   28篇
  2020年   20篇
  2019年   13篇
  2018年   31篇
  2017年   15篇
  2016年   15篇
  2015年   6篇
  2014年   11篇
  2013年   35篇
  2012年   12篇
  2011年   13篇
  2010年   8篇
  2009年   14篇
  2008年   21篇
  2007年   15篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   12篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1965年   1篇
排序方式: 共有379条查询结果,搜索用时 181 毫秒
371.
In this research, sponge ethylene propylene diene rubber (EPDM) nanocomposites based on functionalized multi-walled carbon nanotubes (f-MWCNTs) and foaming agent azodicarbonamide (AZD) were successfully fabricated as potential acoustic-absorbing foams. Two crosslinking systems were utilized for stabilizing the foam structure and improving its properties by subsequent sulfur and electron beam irradiation at 50 kGy as a fixed dose. The impacts of the concentration of AZD, f-MWCNTs and crosslinking systems on acoustic and physico-mechanical properties were investigated. The results manifested that the optimum foaming content was 3 phr. The acoustic data exhibited satisfactory enhancement in the sound absorption coefficient (α) for irradiated foam nanocomposites compared to unirradiated nanocomposites. This was attributed to the barrier effect of f-MWCNTs in reducing the pore size of the foam, leading to an increase in the tortuous path in the foam matrix that stifled the sound waves from transferring into the bulk. Likewise, the compression properties were also improved. However, tensile stress and strain at break values for irradiated foams relatively decreased. The data obtained revealed an excellent possibility of using these EPDM foam nanocomposites for potential applications such as acoustic panels and airborne sound insulation. © 2022 Society of Industrial Chemistry.  相似文献   
372.
The emergence of drug-resistant pathogens necessitates the development of new countermeasures. In this regard, the introduction of probiotics to directly attack or competitively exclude pathogens presents a useful strategy. Application of this approach requires an understanding of how a probiotic and its target pathogen interact. A key means of probiotic-pathogen interaction involves the production of small molecules called natural products (NPs). Here, we report the use of whole-cell matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry to characterize NP production by candidate probiotics (mouse airway microbiome isolates) when co-cultured with the respiratory pathogen Burkholderia. We found that a Bacillus velezensis strain inhibits growth of and elicits NP production by Burkholderia thailandensis. Dereplication of known NPs detected in the metabolome of this B. velezensis strain suggests that a previously unannotated bioactive compound is involved. Thus, we present the use of whole-cell MALDI as a broadly applicable method for screening the NP composition of microbial co-cultures; this can be combined with other -omics methods to characterize probiotic-pathogen and other microbe-microbe interactions.  相似文献   
373.

Design and development of new generation smart sensors for medical applications have gained considerable interest of research community in the recent past. In this work, we propose the fabrication of highly sensitive paracetamol sensors-based iron oxide nanoparticles intercalated with graphitic carbon nitride (g-C3N4) (GCN) via insitu chemical synthesis. Structural features of the composites were analyzed through SEM, EDX, XRD, FTIR, and UV-Visible spectroscopic techniques. Presence of iron oxide nanoparticles in GCN, significantly improved the conductivity bare GCN from 16 to 125 S cm?1 due to extended π–π conjugation and large surface area in the composite system. The GCN-Iron oxide (GCN-FO) nanocomposite has been employed as an electrochemical sensing platform for non-enzymatic detection of paracetamol. The electrochemical studies and cyclic voltammetry (CV) results shows that the GCN-FO composite exhibit superior electrochemical properties due to their lower values of the oxidation and reduction potentials. Electrochemical impedance spectroscopy (EIS) studies indicate decreased charge-transfer resistance for iron oxide doped GCN composite in compare to base GCN. The improved electrochemical sensing performance of modified GCN-FO composite electrode is attributed to the formation heterojunctions between iron oxide nanoparticles and GCN. The modified GCN-FO electrodes were employed for non-enzymatic electrochemical detection of PR. The GCN-FO composite electrode shows excellent sensitivity towards PR with a LOD 0.3 μM. Furthermore, the modified GCN-FO electrodes show excellent reproducibility, selectivity, stability and anti-interference performance. Due to its low-cost fabrication, superior electrochemical sensing performance, these modified GCN-FO electrodes could be a promising material for the detection of paracetamol at low concentrations.

  相似文献   
374.
The present study describes the morphological characteristics of the camel heart Ossa cordis, and os aorta using computed tomography soft tissue window (CT) alongside 3D render volume reconstructions and light microscopy. The current study techniques demonstrated the Ossa cordis and os aorta in the cardiac window with more precision than the black and white (ghost), and angiography images. Transverse and sagittal CT images additionally demonstrated the presence of Ossa cordis and os aorta. This study is the first to record two small Ossa cordis sinistrum and one os aorta in the camel heart, in addition to the more commonly observed singular, large, os cordis dextrum. The os cordis dextrum was always located in the upper part of the interventricular septum, near to its junction with the atrium, forming an elongated rectangular shape when observed transversally. The wider cranial part was composed from bone, whereas the caudal aspect was narrow and contained both bone and cartilage. Light microscopy identified that the os cordis dextrum consisted of trabecular bone, marrow spaces, and hyaline cartilage. Two Ossa cordis sinistrum were detected on the left side of the heart, one in the right fibrous ring and another in the interventricular septum, microscopy showed that both contained only trabecular bone with osteocytes, osteoblasts, and osteoclasts. At the level of ascending aorta, there was also trabecular bone containing osteocytes, an os aorta.  相似文献   
375.
Automated segmentation of blood vessels in retinal fundus images is essential for medical image analysis. The segmentation of retinal vessels is assumed to be essential to the progress of the decision support system for initial analysis and treatment of retinal disease. This article develops a new Grasshopper Optimization with Fuzzy Edge Detection based Retinal Blood Vessel Segmentation and Classification (GOFED-RBVSC) model. The proposed GOFED-RBVSC model initially employs contrast enhancement process. Besides, GOAFED approach is employed to detect the edges in the retinal fundus images in which the use of GOA adjusts the membership functions. The ORB (Oriented FAST and Rotated BRIEF) feature extractor is exploited to generate feature vectors. Finally, Improved Conditional Variational Auto Encoder (ICAVE) is utilized for retinal image classification, shows the novelty of the work. The performance validation of the GOFED-RBVSC model is tested using benchmark dataset, and the comparative study highlighted the betterment of the GOFED-RBVSC model over the recent approaches.  相似文献   
376.
With the flexible deployment and high mobility of Unmanned Aerial Vehicles (UAVs) in an open environment, they have generated considerable attention in military and civil applications intending to enable ubiquitous connectivity and foster agile communications. The difficulty stems from features other than mobile ad-hoc network (MANET), namely aerial mobility in three-dimensional space and often changing topology. In the UAV network, a single node serves as a forwarding, transmitting, and receiving node at the same time. Typically, the communication path is multi-hop, and routing significantly affects the network’s performance. A lot of effort should be invested in performance analysis for selecting the optimum routing system. With this motivation, this study modelled a new Coati Optimization Algorithm-based Energy-Efficient Routing Process for Unmanned Aerial Vehicle Communication (COAER-UAVC) technique. The presented COAER-UAVC technique establishes effective routes for communication between the UAVs. It is primarily based on the coati characteristics in nature: if attacking and hunting iguanas and escaping from predators. Besides, the presented COAER-UAVC technique concentrates on the design of fitness functions to minimize energy utilization and communication delay. A varied group of simulations was performed to depict the optimum performance of the COAER-UAVC system. The experimental results verified that the COAER-UAVC technique had assured improved performance over other approaches.  相似文献   
377.
Autism Spectrum Disorder (ASD) refers to a neuro-disorder where an individual has long-lasting effects on communication and interaction with others. Advanced information technology which employs artificial intelligence (AI) model has assisted in early identify ASD by using pattern detection. Recent advances of AI models assist in the automated identification and classification of ASD, which helps to reduce the severity of the disease. This study introduces an automated ASD classification using owl search algorithm with machine learning (ASDC-OSAML) model. The proposed ASDC-OSAML model majorly focuses on the identification and classification of ASD. To attain this, the presented ASDC-OSAML model follows min-max normalization approach as a pre-processing stage. Next, the owl search algorithm (OSA)-based feature selection (OSA-FS) model is used to derive feature subsets. Then, beetle swarm antenna search (BSAS) algorithm with Iterative Dichotomiser 3 (ID3) classification method was implied for ASD detection and classification. The design of BSAS algorithm helps to determine the parameter values of the ID3 classifier. The performance analysis of the ASDC-OSAML model is performed using benchmark dataset. An extensive comparison study highlighted the supremacy of the ASDC-OSAML model over recent state of art approaches.  相似文献   
378.
In this study, the effects of temperature on the fatty acids profile and the effects of temperature on the degree of unsaturation of fatty acids of Oreochromis niloticus were investigated. The analysis was performed by gas chromatography. The study showed that there were large temperature variations (10.0–32.0°C) during the study period (January–December). The highest crude fat content was found in January (3380 mg/100 g) and the lowest in June (2050 mg/100 g). The fatty acids profile showed significantly different diversity (p < 0.05). Total saturated fatty acid (∑SFA) content ranged from 409.54 to 1297.61 mg/100 g, monounsaturated fatty acid (∑MUFA) from 207.68 to 665.81 mg/100 g, and polyunsaturated fatty acid (∑PUFA) from 175.12 to 972.23 mg/100 g. The ∑MUFA and ∑PUFA concentrations were highest in January and lowest in June, and the ∑SFA concentration was lowest in January and highest in June. EPA and DHA contents were highest in January (198.96 mg/100 g) and lowest in June (48.76 mg/100 g). The contents of omega-3 (653.17 mg/100 g) and omega-6 fatty acids (252.54 mg/100 g) were highest in January and lowest in June (ω-3; 106.43 and ω-6; 60.91 mg/100 g). It concluded that the degree of unsaturation of fatty acids increases with decreasing temperature. In this study, the nutritional quality of the FAs profile was assessed using lipid quality indices. The indices indicating dietary quality of lipids by their values: Atherogenic index (0.47), thrombogenic index (0.38), hypocholesterolemic to hypercholesterolemic (3.00), meat fat quality (6.78), ω6/ω3 ratio (0.39), PUFA/SFA (2.37), MUFA/SFA (1.62), PUFA/MUFA (1.46), and PUFA + MUFA/SFA (3.99). These values are within the recommended range, indicating that the lipid profile of O. niloticus has high nutritional quality, which can be further improved by harvesting the fish during the winter season. Due to the nutritional importance of O. niloticus, the culture of this species could have significant interest to the people of Karachi, especially the coastal communities. To promote the nutritional diet in local population, the government should support the aquaculture of Nile tilapia.  相似文献   
379.
Ahmed  Khan Bilal Mukhtar  Khan  M. Masroor A.  Shabbir  Asfia  Ahmad  Bilal  Uddin  Moin  Azam  Ameer 《SILICON》2023,15(1):153-166
Silicon - In the agriculture sector, the use of nanoparticles (NPs) has become a centre of attraction for plant biological researchers.&nbsp;Several studies have been accomplished regarding the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号